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Abstract

The known limit representations of the Dirac delta function involve delta
sequences that do not vanish at the support of the limit Dirac delta function.
However, Galapon (2009 Proc. R. Soc. A 465 71) assumes that a delta sequence
may vanish at the support of the limit Dirac delta function for all finite values
of the limit parameter. Here, such delta sequences are shown to exist by
construction.

PACS number: 02.50.Ng

In [1] we developed a theory of quantum first time of arrival and considered the appearance
of particle in the theory. Numerical simulation yielded a sequence of normalized empirical
functions, {gν(x)}, with gν(0) = 0 for all finite ν and with gν(x) having two dominant peaks
coalescing at x = 0 as ν gets arbitrarily large [1, 2]. (See figure 1(b).) We claimed that the
sequence tended to the Dirac delta function (DDF) δ(x). If gν(x) indeed tends to δ(x) as ν

approaches infinity, then gν(x) has the property that it vanishes at the support of its limit Dirac
delta function. Since we are not aware of a sequence converging to the Dirac delta function
with such a property, it becomes important to demonstrate the existence of such sequences to
lend a plausibility proof to our claim in [1, 2]. In this paper, we give examples of sequences
of functions that vanish at the support of their limit Dirac delta function.

The DDF δ(x) is defined by the formal property
∫ ∞

−∞ δ(x)ψ(x) dx = ψ(0), for sufficiently
well-behaved functions ψ(x). Rigorously, the DDF is defined by means of a sequence of
integrable functions, {fν(x)}, with the property that limν→∞

∫ ∞
−∞ fν(x)ψ(x) dx = ψ(0).

Such a sequence is referred to as a delta-convergent sequence or simply a delta sequence. For
a given delta sequence, {fν(x)}, we have what is known as a limit representation of the DDF,
δ(x) = limν→∞ fν(x). Known delta sequences have either increasing positive or infinite
values at the origin; that is, for sufficiently large ν, 0 < fν(0) < fν ′(0) when ν < ν ′ or
fν(0) = ∞ for all ν. For example, for the former, we have the well-known representations
limν→∞ sin(νx)(πx)−1 = δ(x) and limν→∞ ν[π(1 + ν2x2)]−1 = δ(x) [3]; for the latter, we
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Figure 1. (a) Plot of hν(1, x) for ν = 1 (solid line), ν = 5 (dashed line) and ν = 15 (dotted line).
(b) The empirical sequence claimed in [1] that tends to the Dirac delta function.

have limν→∞ |x|−1+1/ν(2ν)−1 = δ(x) [4]. We are not aware of delta sequences with the
property that fν(0) = 0 for all finite ν.

To prove the existence of delta sequences that vanish at the support of the limit Dirac
delta function, we will need the following well-known theorem.

Theorem 1 ([5]). A sequence of functions, {fv(x)}, is a delta-convergent sequence if (1) for
any M > 0 and for |a|, |b| � M , the quantities

∣∣ ∫ b

a
fv(x) dx

∣∣ are bounded by a constant
depending only on M, and (2) for any fixed non-vanishing a and b

lim
ν→∞

∫ b

a

fν(x) dx =
{

0, for 0 < a < b and a < b < 0
1, for a < 0 < b.

Using this theorem, we now wish to show that for any positive integer n the set of functions

hν(n, x) = 1

22n+1�(n + 1/2)
νn+ 1

2 x2n e−x2ν/4

is a delta sequence in ν so that limν→∞ hν(n, x) = δ(x). These functions satisfy hν(n, 0) = 0
for all 0 < ν < ∞, and have two peaks that coalesce at x = 0 as ν tends to infinity. (See
figure 1(a).)

First, for a fixed positive integer n the sequence
∣∣ ∫ b

a
hν(n, x) dx

∣∣ is uniformly bounded
for any a and b. This is the case because hν(n, x)’s are normalized, which can be shown by
changing variables from x to y = x

√
ν/2:∫ ∞

−∞
hν(n, x) dx = 1

�(n + 1/2)

∫ ∞

−∞
y2n e−y2

dy = 1,

where we have used the identity
∫ ∞
−∞ y2n e−y2

dy = �(n + 1/2) for n = 0, 1, 2, . . . [6]. Then,

for any a and b, we have
∣∣ ∫ b

a
hν(n, x) dx

∣∣ � 1 for all ν, so that
∣∣ ∫ b

a
hν(n, x) dx

∣∣ is bounded
by a constant independent of a, b and ν. Now for 0 < a < b, we have the integral∫ b

a

hν(n, x) dx = 1

�(n + 1/2)

∫ b
√

ν/2

a
√

ν/2
y2n e−y2

dy �
∫ ∞

a
√

ν/2
y2n e−y2

dy,
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where we have effected the same change in variables. The right-hand side of the inequality
tends to zero as ν tends to infinity; hence, limν→∞

∫ b

a
hν(n, x) = 0. Similar treatment for

b < a < 0 gives the same conclusion that the integral vanishes in the limit. On the other hand,
for a < 0 < b, we have∫ b

a

hν(n, x) dx =
∫ ∞

−∞
hν(n, x) dx −

∫ a

−∞
hν(n, x) dx −

∫ ∞

b

hν(n, x) dx

= 1 − 1

�(n + 1/2)

[∫ ∞

|a|√ν/2
y2n e−y2

dy +
∫ ∞

b
√

ν/2
y2n e−y2

dy

]
.

The bracketed integrals tend to zero as ν tends to infinity; hence, limν→∞
∫ b

a
hν(n, x) = 1.

Thus for every positive integer n, the sequence {hν(n, x)} is a delta sequence. Other limit
representations can be constructed from hν(n, x)’s.

We now describe how. Let fν(1, x), fν(2, x), fν(3, x), . . . be a sequence of delta
sequences in ν, where

∫ ∞
−∞ fν(n, x) dx = 1 for every positive integer n, e.g. hν(n, x)’s.

Let {pn} be a sequence of real numbers such that the sum
∑∞

n=1 pn is absolutely convergent.
Moreover, let

∑∞
n=1 pnfν(n, x) be uniformly convergent in x. Then the function

fν(x) =
∑∞

n=1 pnfν(n, x)∑∞
n=1 pn

is a delta sequence in ν. This follows because the uniform convergence of the sum allows
term-by-term integration of the series; moreover, the uniform boundedness of the integral
an(ν) = ∫ b

a
fν(n, x) dx, |an(ν)| � 1, yields the uniformly convergent sum

∑∞
n=1 pnan(ν) in

ν, from which we can interchange the order of the sum and the limit for ν. That fν(x) is a
delta sequence now follows immediately from the fact that it is normalized by construction.
Now more representations can be obtained by taking subsequences of the sequence fν(n, x)

and then treating these subsequences as another sequence of delta sequences; we can then
proceed as described.

This procedure allows us to construct a host of limit representations of the Dirac delta
function from hν(n, x)’s. Given the sequence {pn}, with

∑∞
k=1 pn absolutely convergent, the

series

hν(x) =
∑∞

n=1 pnhν(n, x)∑∞
n=1 pn

= 1∑∞
n=1 pn

∞∑
n=1

pn

1

22n+1�(n + 1/2)
νn+ 1

2 x2n e−x2ν/4

is uniformly convergent. To prove its uniform convergence, note that for every x we have the
bound νnx2n e−x2ν/4 � 4nnn e−n; then

|pnhν(n, x)| � |pn|
2�(n + 1/2)

ν
1
2 nn e−n.

By the Weierstrass M-test, the series hν(x) converges uniformly if there exists a sequence
of positive numbers {Mn} such that |pnhν(n, x)| � Mn for all all x and n, with

∑∞
n=1 Mn

absolutely convergent. From the above inequality bounding |pnhν(n, x)|, we find that such a
sequence is given by

Mn = |pn|
2�(n + 1/2)

ν
1
2 nn e−n, n = 1, 2, . . . .

The convergence of the sum of Mn’s follows from the absolute convergence of the sum of
pn’s and the fact that Mn ∼ √

ν|pn|/2
√

2π as n approaches infinity. Hence, the series hν(x)

is uniformly convergent and is a delta sequence.
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Different limit representations of the DDF with the same properties as those of hν(n, x)’s
can now be constructed at will. For example, with pn = (−1)n/n! and pn = 1/2n, we have
the representations

lim
ν→∞

1√
π(1 − 1/e)

√
ν sin2

(√
νx

2

)
e−vx2/4 = δ(x),

lim
ν→∞

ν

4
√

2
x erf

(
x

2

√
ν

2

)
e−νx2/8 = δ(x),

respectively. These delta sequences vanish at the support of the limit Dirac delta function and
have two peaks coalescing at x = 0 as ν → ∞. Many more such limit representations of the
Dirac delta function can be constructed, but our examples here are sufficient to prove that such
delta sequences exist, thus establishing the plausibility of our claim in [1, 2].
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